

The potential of multi-cancer early detection screening in reducing cancer incidence and mortality in high-risk groups: A modeling study

#10542

Jagpreet Chhatwal^{1,2,3}, Jade Xiao³, Andrew ElHabri³, Christopher Tyson⁴, Xiting Cao⁴, Sana Raoof⁵, A. Mark Fendrick⁶, A. Burak Ozbay⁴, Paul Limburg⁴, Tomasz M. Beer⁴, Ashish Deshmukh⁷, Andrew Briggs⁸

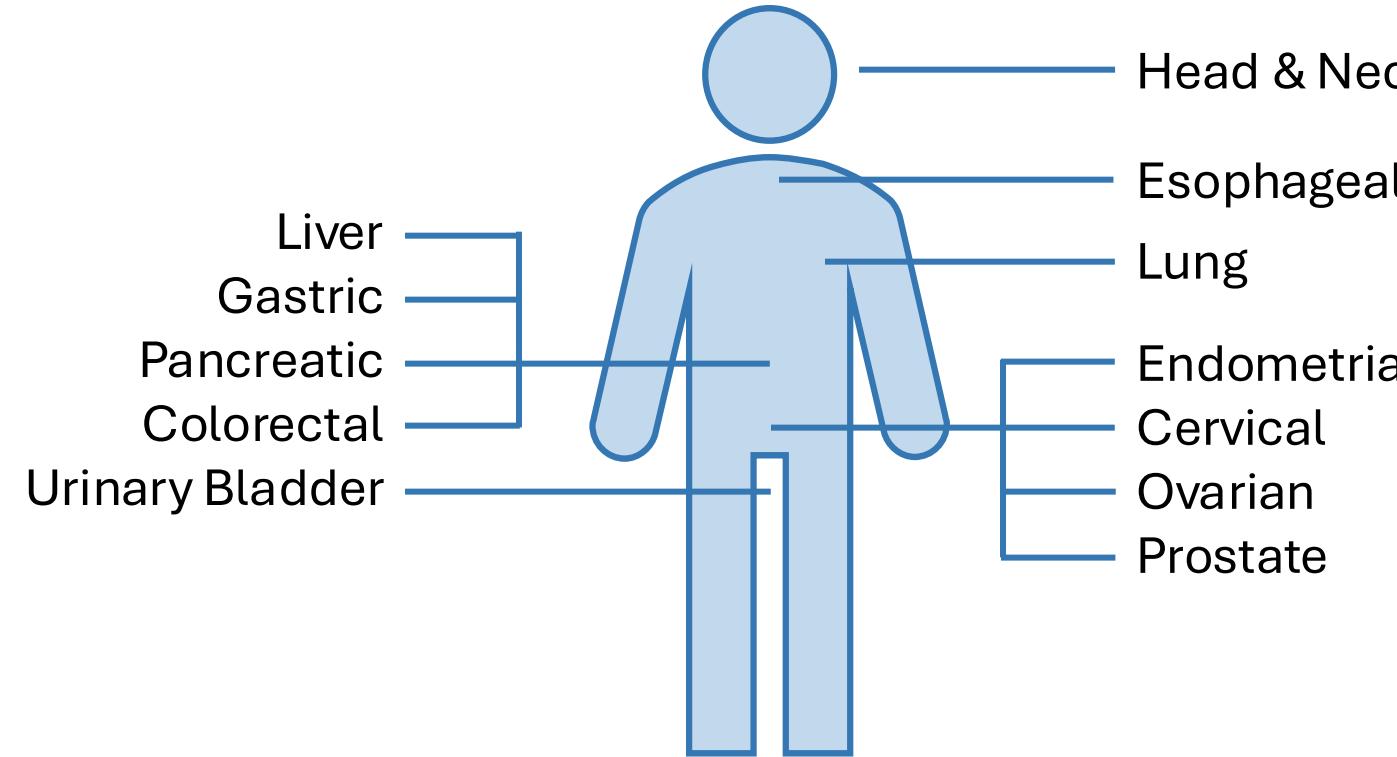
¹ Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA, ² Center for Health Decision Science, Harvard University, Boston, MA, USA, ³ Value Analytics Labs, Boston, MA, USA, ⁴ Exact Sciences Corporation, Madison, WI, USA, ⁵ Memorial Sloan Kettering Cancer Center, New York, NY, USA, ⁶ School of Public Health, University of Michigan, Ann Arbor, MI, USA, ⁷ Medical University of South Carolina, Charleston, SC, USA, ⁸ London School of Hygiene & Tropical Medicine, London, UK

1

BACKGROUND

- Cancer is the second leading cause of death in the United States.¹
- Early detection could reduce cancer-related mortality by averting progression to late-stage cancer, which is associated with lower likelihood of cure and survival.^{2,3}
- Currently, around half of cancer cases in the US are detected at an advanced stage,⁴ and routine screening is USPTSF-recommended for only four cancer types (breast, cervical, colorectal, lung).⁵
- Known risk factors for cancer include smoking, alcohol use, and family history of cancer. Screening may be especially beneficial in these elevated-risk groups.
- Blood-based multi-cancer early detection (MCED) tests could revolutionize cancer screening by simultaneously detecting multiple cancer types.

2


OBJECTIVE

To evaluate the potential impact of an MCED test in terms of the reduction in cancer incidence and mortality in the general population and elevated-risk groups defined by smoking status, alcohol use, and family history of cancer.

3

METHODS

- We developed **Simulation Model for MCED** (SiMCED), a microsimulation model of 14 solid tumor cancer types that account for nearly 80% of all cancer incidence and mortality.⁶

- In the absence of a diagnosis, cancer progresses according to cancer type- and stage-specific dwell times.
- Unobserved cancer prevalence and incidence were estimated using a backwards induction approach.^{7,8}
- The model was calibrated to reproduce incidence rates of usual care diagnosis as captured in the SEER database.⁶
- MCED test sensitivities were derived from a large, multi-center, prospectively-collected, retrospective case-control study (ASCEND-2).⁹
- After a cancer diagnosis, individuals follow SEER survival curves to determine the time and cause of death, i.e., cancer- or non-cancer-related.
- Using a 10-year horizon, we simulated the life course of 100,000 adults aged 50-84 years, representative of the US population.

- In addition, we simulated three elevated-risk groups: **smokers** (former and current), **heavy alcohol users**, and **individuals with a family history of cancer in ≥1 first-degree relatives** (FDRs).
 - The joint distribution of sex, age, race, and risk factor profile in the general population was derived from the National Health Interview Survey.¹⁰
 - Inflation/deflation factors for cancer incidence rates were estimated from published literature.
- We compared outcomes under two screening strategies:
 - Usual care:** Without MCED testing, and;
 - Usual care + MCED:** With annual MCED testing for individuals aged 50-84 years.

4

RESULTS

- Figure 1** compares 10-year stage shift across the general population and elevated-risk groups.

- Tables 1 and 2** present cancer-specific 10-year reductions in, respectively, stage IV cancer incidence and cancer mortality.

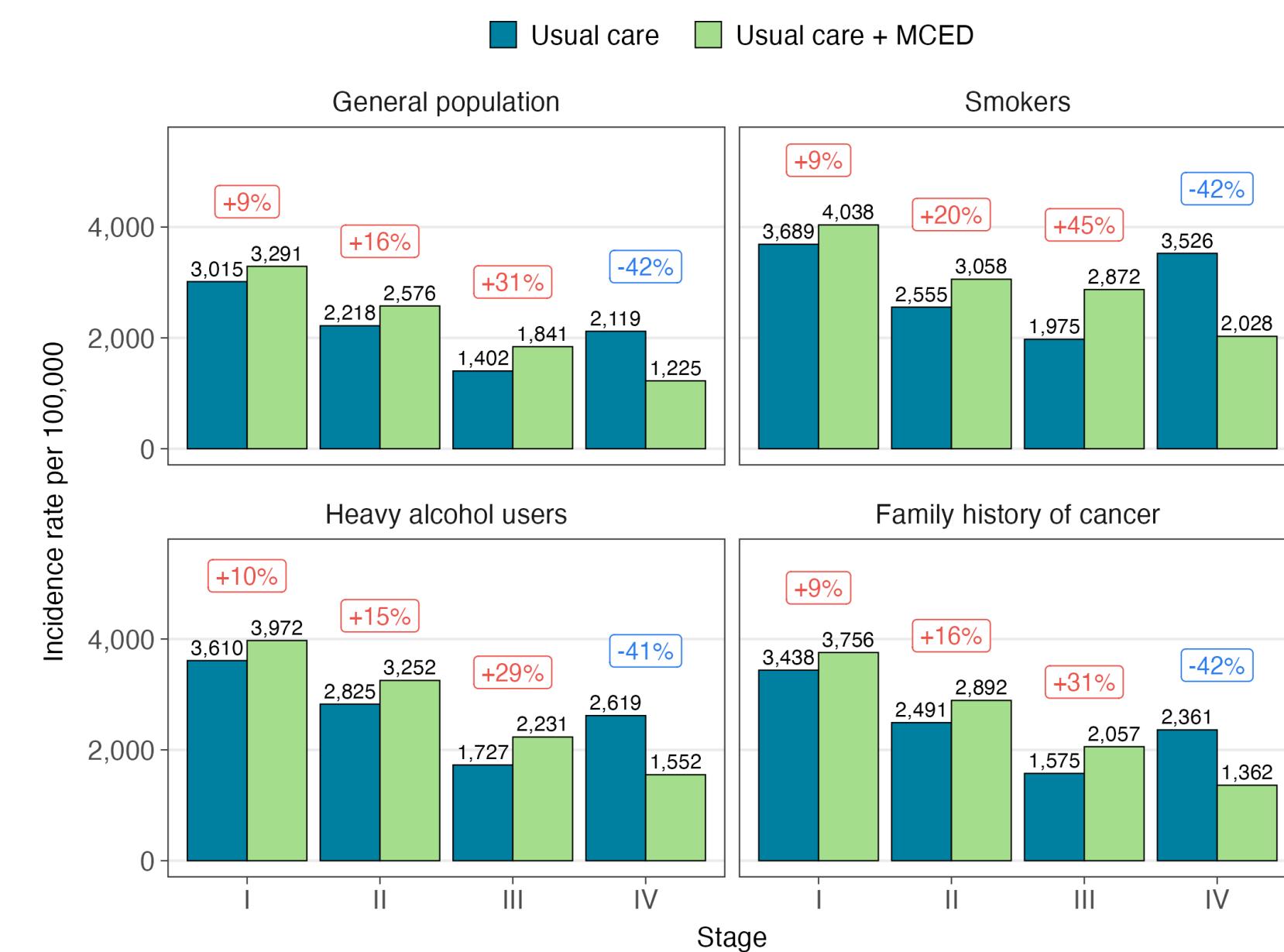


Figure 1: 10-year stage shift for the general population and elevated-risk groups.

Table 1: Reductions in 10-year stage IV cancer incidence (per 100,000) for the general population and elevated-risk groups.

Cancer	General population			Smokers			Heavy alcohol users			Family history of cancer		
	Usual care	Usual care + MCED	Change	Usual care	Usual care + MCED	Change	Usual care	Usual care + MCED	Change	Usual care	Usual care + MCED	Change
Breast	94	56	-37 (-40%)	94	56	-38 (-40%)	117	71	-46 (-40%)	108	65	-43 (-40%)
Cervical	11	3	-8 (-73%)	13	3	-9 (-75%)	16	4	-12 (-75%)	14	4	-10 (-74%)
Colorectal	238	102	-136 (-57%)	255	110	-145 (-57%)	286	124	-163 (-57%)	257	110	-147 (-57%)
Endometrial	44	26	-18 (-41%)	41	24	-17 (-41%)	44	26	-18 (-40%)	57	33	-23 (-41%)
Esophageal	50	26	-24 (-49%)	54	28	-26 (-48%)	108	57	-51 (-47%)	55	28	-26 (-48%)
Gastric	81	31	-50 (-62%)	83	32	-51 (-62%)	81	32	-50 (-61%)	98	38	-61 (-62%)
Head and Neck	173	114	-58 (-34%)	223	149	-74 (-33%)	398	266	-132 (-33%)	199	132	-67 (-34%)
Kidney	78	56	-22 (-28%)	83	60	-23 (-28%)	70	51	-20 (-28%)	83	60	-23 (-27%)
Liver	67	18	-49 (-74%)	68	17	-51 (-74%)	81	22	-59 (-73%)	79	21	-58 (-74%)
Lung	764	429	-335 (-44%)	2,028	1,145	-883 (-44%)	804	454	-350 (-44%)	820	459	-361 (-44%)
Ovarian	54	38	-15 (-29%)	57	39	-18 (-31%)	58	42	-17 (-29%)	68	48	-20 (-30%)
Pancreatic	209	89	-120 (-58%)	240	101	-139 (-58%)	223	94	-129 (-58%)	233	99	-135 (-58%)
Prostate	211	207	-5 (-2%)	234	229	-5 (-2%)	287	281	-6 (-2%)	232	227	-5 (-2%)
Urinary Bladder	47	31	-16 (-34%)	53	34	-18 (-35%)	44	30	-15 (-33%)	56	37	-19 (-34%)
Total	2,119	1,225	-894 (-42%)	3,536	2,028	-1,498 (-42%)	2,619	1,552	-1,067 (-41%)	2,361	1,362	-999 (-42%)

Table 2: Reductions in 10-year cancer mortality (per 100,000) for the general population and elevated-risk groups.

Cancer	General population		Smokers		Heavy alcohol users		Family history of cancer		
	Usual care	Usual care + MCED	Usual care	Usual care + MCED	Usual care	Usual care + MCED	Usual care	Usual care + MCED	
Breast	124	93	-31 (-25%)	126	93	-32 (-26%)	154	115	-39 (-25%)
Cervical	19	11	-8 (-43%)	21	11	-10 (-45%)	26	15	-11 (-43%)
Colorectal	306	205	-101 (-33%)	330	221	-109 (-33%)	371	249	-122 (-33%)
Endometrial	63	50	-14 (-22%)	60	47	-13 (-22%)	65	51	-14 (-21%)
Esophageal	84	73	-11 (-13%)	92	80	-12 (-13%)	186	161	-12 (-13%)
Gastric	115	86	-29 (-25%)	118	88	-30 (-26%)	115	86	-29 (-25%)
Head and Neck	117	99	-18 (-16%)	152	128	-24 (-16%)	264	222	-43 (-16%)
Kidney	92	78	-14 (-15%)	97	82	-15 (-15%)	83	70	-13 (-16%)
Liver	178	141	-37 (-21%)	184	146	-38 (-21%)	220	175	-45 (-20%)
Lung	964	831	-133 (-14%)	2,590	2,246	-344 (-13%)	1,014	876	-138 (-14%)
Ovarian	72	63	-9 (-12%)	76	67	-9 (-12%)	77	68	-9 (-12%)
Pancreatic	295	253	-42 (-14%)	338	289	-49 (-15%)	313	267	-46 (-15%)
Prostate	82	80	-2 (-2%)	94	92	-2 (-2%)	113	111	-2 (-2%)
Urinary Bladder	100	88	-12 (-12%)	114	101	-13 (-11%)	95	85	-10 (-11%)
Total	2,612	2,150	-461 (-18%)	4,391	3,692	-699 (-16%)	3,096	2,551	-545 (-18%)

CONCLUSION

MCED screening demonstrates the potential to reduce late-stage cancer incidence and mortality in both the general population and elevated-risk groups.

These findings highlight the value of MCED tests in advancing early detection and improving cancer outcomes.

6

REFERENCES

1. Siegel RL et al. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49.
2. Yu M et al. A flexible quantitative framework to assess the potential contribution of early cancer detection to improved cancer survival. J Clin Oncol. 2023;41(16_suppl):e22508-e22508.
3. McGarvey N et al. Increased healthcare costs by later stage cancer diagnosis. BMC Health Serv Res. 2022;22(1):1155.
4. Crosby D et al. Early detection of cancer. Science. 375(6586):eaey9040.
5. Centers for Disease Control and Prevention. Screening Tests. www.cdc.gov/cancer/dcpc/prevention/screening.htm
6. National Cancer Institute. Surveillance, Epidemiology, and End Results Program. <https://seer.cancer.gov/index.html>
7. ElHabri A et al. EPH232 The Large Hidden Prevalence Rate of Cancer Using Backward Induction Method Reveals Screening Opportunity in Earlier Stages. Value Health. 26:S205.
8. Chhatwal J et al. Correlation of unobserved incidence of cancer in earlier stages with the observed incidence. J Clin Oncol. 41(16_suppl):10634.
9. Gainullin V et al. Abstract A056: Performance of multi-biomarker class reflex testing in a prospectively-collected cohort. Clin Cancer Res. 2024;30(21_Supplement):A056.
10. Centers for Disease Control and Prevention. National Health Interview Survey (NHIS 2015). <https://www.cdc.gov/niosh/whc/source/ohs>

This study was funded by Exact Sciences Corp., Madison, WI.